This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

CHIRAL LIGANDS: SYNTHESIS AND CHARACTERIZATION OF CARBOHYDRATE DERIVATIVES OF SEVEN- AND EIGHT-MEMBERED CYCLIC PHOSPHITES

Joseph E. Babiarza; Stephen D. Pastora

^a Ciba Additives Research Department, Ciba-Geigy Corporation, Ardsley, New York, USA

To cite this Article Babiarz, Joseph E. and Pastor, Stephen D.(1994) 'CHIRAL LIGANDS: SYNTHESIS AND CHARACTERIZATION OF CARBOHYDRATE DERIVATIVES OF SEVEN- AND EIGHT-MEMBERED CYCLIC PHOSPHITES', Phosphorus, Sulfur, and Silicon and the Related Elements, 91: 1, 263 — 269

To link to this Article: DOI: 10.1080/10426509408021952 URL: http://dx.doi.org/10.1080/10426509408021952

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CHIRAL LIGANDS: SYNTHESIS AND CHARACTERIZATION OF CARBOHYDRATE DERIVATIVES OF SEVEN- AND EIGHT-MEMBERED CYCLIC PHOSPHITES

JOSEPH E. BABIARZ and STEPHEN D. PASTOR*

Ciba Additives Research Department, Ciba-Geigy Corporation, 444 Saw Mill River Road, Ardsley, New York 10502-2669, USA

(Received July 20, 1994)

The synthesis and characterization of carbohydrate derivatives of the dibenzo[d, f][1,3,2]dioxaphosphepin and dibenzo[d,g][1,3,2]dioxaphosphocin ring system is described.

Key words: Dibenzo[d, f][1,3,2]dioxaphosphepin, dibenzo[d, g][1,3,2]dioxaphosphocin, carbohydrate derivative, stereoaxis, chiral ligand.

Chiral phosphorus ligands have played an important role in the design of chiral transition-metal catalysts for asymmetric synthesis. Quite recently, studies have appeared on sterically congested ligands incorporating the dibenzo [d, f][1,3,2] dioxaphosphepin and dibenzo [d,g][1,3,2] dioxaphosphocin ring systems, are touted as superior ligands for transition-metal-catalyzed hydroformylation reactions. Van Leeuwen et al. reported asymmetric rhodium-catalyzed hydroformylation reactions using chiral derivatives of the dibenzo [d,f][1,3,2] dioxaphosphepin ring system as ligands. The utilization of carbohydrates from the chiral pool offers an attractive route for the preparation of chiral organophosphorus ligands. The synthesis of chiral carbohydrate derivatives of the dibenzo [d,f][1,3,2]-dioxaphosphepin and dibenzo [d,g][1,3,2] dioxaphosphocin ring systems is reported herein.

RESULTS AND DISCUSSION

In 1965 Nifant'ev and Tuseev reported that the reaction of 1,2:5,6-bis-O-(1-meth-ylethylidene)-D-glucofuranose 1 (commonly diacetoneglucose) with hexamethyl-phosphorous triamide (HMPA) gave phosphite 2.9 The synthesis of 2 was inves-

tigated using phosphorus(III) chloride in place of HMPA as a model for the synthesis of sugar derivatives from seven- and eight-membered phosphorochloridites. $^{2.8,10.11}$ The reaction of three equivalents of 1 with one equivalent of phosphorus(III) chloride using triethylamine as an acid acceptor gave 2 (70% column chromatographed). In the 31 P{ 1 H} NMR spectrum of 2, a singlet was observed at δ 145.8, which is in the region expected for a tricoordinate P(III) ester. 12

The chloridite 4a was prepared in situ by the reaction of the bisphenol 3a with phosphorus(III) chloride using triethylamine as an acid acceptor. ¹³ The reaction of 4a with 1 afforded 5a (50% recrystallized yield). In the ³¹P{¹H} NMR spectrum of 5a a singlet was observed at δ 132.9, which is in the region previously observed for analogous eight-membered ring phosphites. ^{10,11a,14} In the ¹H NMR spectrum of 5a, the magnitude of the geminal coupling ($^2J_{HCH} = -12.6$ Hz) observed for the C(12) bridging methylene protons of the dioxaphosphocin ring is that expected for the boat-chair conformation (BC) commonly found for the trivalent phosphorus containing ring. ^{15–17} The downfield C(12) proton coupled to phosphorus, whose NMR signal overlapped with the proton signals in the carbohydrate substituent, has previously been shown to have a pseudoaxial ring orientation. ¹⁶

The corresponding C(12)-substituted dioxaphosphocin **5b** was prepared by the reaction of **1** with the chloridite **4b**. In the $^{31}P\{^{1}H\}$ NMR of the reaction product, a singlet was observed at δ 132.5 that was assigned to the tricoordinate P(III) atom of **5b**. A signal at δ 127.6 was observed in the $^{31}P\{^{1}H\}$ NMR for a minor phosphorus moiety that could not be isolated and fully characterized. Although attempts to separate the mixture were not completely successful, the concentration of **5b** in the mixture could be enriched by recrystallization from 2-butanone.

In the ¹H NMR spectrum of **5b**, the C(12) proton appears as a doublet of quartets at δ 5.46 with ³J_{HCCH} = 7.5 Hz and ⁵J_{HP} = 2.1 Hz. ^{10,18} The proton assignments were verified by 2D homonuclear ¹H-COSY NMR experiments (Figures 1 and 2). The observation of five-bond *J* coupling of the C(12)-methine proton to phosphorus is consistent with a BC conformation of the dioxaphosphocin ring with a pseudoaxial orientation for both the C(12) proton and the lone pair of electrons on phosphorus. ^{15,16} The signal for the C(12)-methyl protons of **5b** is observed at δ 1.57 in the COSY spectrum. ¹⁹

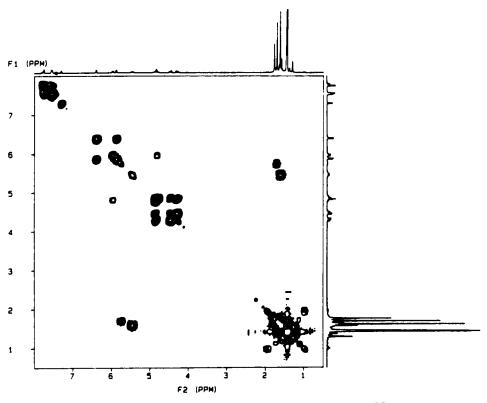


FIGURE 1 2D Homonuclear COSY 'H NMR spectrum of 5b.

FIGURE 2 Atom numbering scheme.

Reports on the synthesis and stereochemistry of the seven-membered dibenzo-[d,f][1,3,2]dioxaphosphepin ring system have appeared only recently.^{2,3,15,20-23} Crystallographic, variable-temperature NMR, and modelling studies all suggest that the dibenzo[d,f][1,3,2]dioxaphosphepin ring has a rapidly equilibrating nonplanar twisted conformation in solution. A free energy of activation for ring inversion of 10.2 kcal/mol was determined by variable-temperature NMR spectroscopy for a tetra-tert-butyl-substituted dibenzo[d,f][1,3,2]dioxaphosphepin ring.^{2,3b}

The phosphorochloridite **8** was prepared *in situ*, ¹¹ as previously reported, by the reaction of bisphenol **7** with phosphorus(III) trichloride using triethylamine as an acid acceptor. ^{24,25} The reaction of **8** with **1** in the presence of triethylamine gave the carbohydrate derivative **6** as a white solid (71% recrystallized). In the ³¹P{¹H} NMR spectrum of **6**, a singlet was observed at δ 144.7 for the phosphorus atom of the dibenzo[d, f][1,3,2]dioxaphosphepin ring. The observed optical rotation of **6** ([α]²⁵_D = +86.22 [c = 0.9522; CH₂Cl₂] is significantly larger than that reported for **1** ([α]²⁵_D = -18.5 [c = 5, H₂O], ²⁶ which may reasonably be attributed to the contribution of the stereoaxis (the single bond connecting the two aryl rings) to the optical rotation. ²⁷⁻²⁹

EXPERIMENTAL

All melting points were determined in open capillary tubes with a Thomas-Hoover melting point apparatus and are uncorrected. ¹H NMR and ³¹P NMR spectra were taken on a Varian Model XL-200 or Bruker 300 FT NMR spectrometer. All ¹H chemical shifts are reported in ppm relative to tetramethylsilane, where a positive sign is downfield from the standard. All ³¹P chemical shifts are reported in ppm relative to 85% phosphoric acid (external), where a positive sign is downfield from the standard. Significant ¹H NMR data are tabulated in the following order: multiplicity (m, multiplet; s, singlet; d, doublet; t, triplet; dd, doublet of doublets; dq, doublet of quartets; dt, doublet of triplets), atom assignments, coupling constants in Hertz, and number of protons. Merck silica gel 60 (70–230 mesh) was used for column chromatography. Merck precoated (0.25 mm) silica gel F-254 plates were used for TLC. Reagents were purchased from commercial laboratory supply houses. Solvents were dried prior to use when necessary with appropriate drying agents. Reactions were carried out in flame-dried apparatus under a dry inert atmosphere of either nitrogen or argon. Elemental analyses were performed by the Analytical Research Department, Ciba-Geigy Corporation.

Tris(1,2:5,6-bis(1-methylethylidene)-α-D-glucofuranosyl) phosphite, (2). To a solution of 1.38 g (10 mmol) of phosphorus(III) chloride in 100 mL of diethyl ether cooled with an ice-water bath was added 7.81 g (30 mmol) of 1 followed immediately by a solution of 3.18 g (32 mmol) of triethylamine in 20 mL of diethyl ether. The resultant reaction mixture was stirred for 20 h at rt and then the precipitate of triethylamine hydrochloride was removed by filtration. The solvent was removed in vacuo and the residue purified by column chromatography (180 g SiO₂; 9:1 dichloromethane:diethyl ether eluent) to give 5.70 g (70%) of a viscous liquid that crystallized upon standing, mp 54–57°C (lit° 54–57°C). 31 P{ 11 H} NMR (CDCl₃) δ 145.8; 11 H NMR (CDCl₃) (300 MHz) δ 1.30 (s, 9 H), 1.35 (s, 9 H), 1.44 (s, 9 H), 1.50 (s, 9 H), 4.09 (overlapping m, 9 H), 4.29 (m, 3 H), 4.64 (d, 3 H), 4.76 (dd, 3 H), 5.93 (9, 3 H); [α]_D²² = -20.27 [c = 0.967; CHCl₃]. Anal. Calcd for C₃₆H₅₇O₁₈P: C, 53.5; H, 7.1; P, 3.8. Found: C, 53.5, H, 7.1, P, 3.8.

2,4,8,10-Tetrakis(1,1-dimethylethyl)-6-[1,2:5,6-bis(1-methylethylidene)-α-D-glucofuranosyl]-12H-dibenzo[d,g][1,3,2]dioxaphosphocin, (5a). To a solution of 8.9 g (65 mmol) of phosphorus(III) chloride in 100 mL of toluene at 0°C was added dropwise over 1 h a solution of 25.0 g (59 mmol) of 2.2′- methylenebis(4,6-di-*tert*-butylphenol), 3a, and 16.2 g (136 mmol) of triethylamine in 300 mL of toluene. The reaction mixture was stirred at rt overnight and then to the cooled reaction mixture was added 6.0 g (59 mmol) of triethylamine followed by portionwise addition of 15.4 g (59 mmol) of 1. The reaction mixture was stirred at room temperature for 48 h and then the precipitate of triethylamine hydrochloride was removed by filtration. The solvent was removed *in vacuo* and the residue recrystallized from acetonitrile to give 21 g (50%) of a white solid, mp 173–176°C. 31 P{ 1 H} NMR (benzene-d₆) δ 132.9; 1 H NMR (benzene-d₆) (200 MHz) δ 1.1–1.6 (overlapping m, 48 H), 3.45 (d, C(12)-H, 2 J_{HCH} = 12.6 Hz, 1 H), 4.16 (m, 2 H), 4.3–4.6 (overlapping m, 3 H), 5.45 (overlapping m, 2 H), 6.00 (d, 1 H), 7.2–7.4 (overlapping m, 4 H). Anal. Calcd for C₄₁H₆₁O₈P: C, 69.1; H, 8.6. Found: C, 69.2; H; 9.0.

2,4,8,10-Tetrakis(1,1-dimethylethyl)-12-methyl-6-[1,2:5,6-bis(1-methylethylidene)- α -D-glucofuranosyl]12H-dibenzo[d,g][1,3,2]dioxaphosphocin, (5b). To a solution of 4.12 g (30 mmol) of phosphorus trichloride in 100 mL of toluene cooled with an ice-water bath was added dropwise a solution of 13.16 g (30 mmol) of 3b and 6.07 g (60 mmol) of triethylamine. The reaction mixture was stirred at rt for 48 h. The reaction mixture was cooled with an ice-water bath and then a solution of 7.81 g (30 mmol) of 1 and 3.04 g (30 mmol) of triethylamine in 60 mL of toluene (mixture was warmed to effect complete solution) was added dropwise. The resultant reaction mixture was stirred for 48 h at rt and then the precipitate of triethylamine hydrochloride was removed by filtration. The solvent was removed in vacuo and the residue was recrystallized from 2-butanone to give 11.36 g (52%) of a white solid. The analytical sample³⁰ was prepared by recrystallization twice from a mixture of heptane and toluene, mp 244–247°C. ³¹P{¹H} NMR (benzene-d₆) δ 132.5. ¹H NMR (benzene-d₆) (200 MHz) δ 1.20–1.80 (overlapping m, 51 H), 4.30 (dd, C(6')-H(a), ${}^{2}J_{H(a)H(b)} = 8.5$ Hz, ${}^{3}J_{H(b)C(6')C(5')H} = 5.7$ Hz, 1 H), 4.48 (dd, C(6')-H(b), ${}^{2}J_{H(a)H(b)} = 8.5$ Hz, ${}^{3}J_{H(b)C(6')C(5')H} = 4.4$ Hz, 1 H), 4.85 (overlapping m, C(4')-H and C(5')-H, 2 H), 5.46 (dq, C(12)-H, ${}^{3}J_{H(C)C(6')C(5')H} = 2.1$ Hz, ${}^{3}J_{H(C)C(6')C(5')H} = 2.3$ Hz, 1 H), 5.97 (dd, C(3')-H, ${}^{3}J_{H(C)C(6')C(5')H} = 2.3$ Hz, 3 Hz, 1 H), 6.40 (d, C(1'), 3 J_{HC(1')C(2')H} = 3.5 Hz, 1 H), 7.55 (d, ArH, 2 H), 7.75 (d, ArH, 1 H). Anal. Calcd for C₄₂H₆₃O₈P: C, 69.4; H, 8.7. Found: C, 69.5; H, 8.8.³¹

2,4,8,10-Tetrakis(1,1-dimethylethyl)-6-[1,2:5,6-bis(1-methylethylidene)-α-D-glucofuranosyl]-dibenzo[d, f][1,3,2]dioxaphosphepin, (6). By the procedure used to prepare compound **5b**, compound 7 was prepared from 12.32 g (30 mmol) of **7**, 4.12 g (30 mmol) of phosphorus(III) chloride, 7.81 g (30 mmol) of **1**, and 9.11 g (90 mmol) of triethylamine in 200 mL toluene. The residue was recrystallized from a mixture of toluene (10 mL) and acetonitrile (90 mL) to give 15.02 g (71%) of a white solid. The analytical sample was prepared by recrystallization twice from acetone, mp 170°C. ³¹P{¹H} NMR (benzene-d₆) δ 144.7, ¹H NMR (benzene-d₆) (200 MHz) δ 1.41-1.70 (overlapping s, 48 H), 4.10 (dd, C(6')-H(a), ²J_{H(a)H(b)} = 8.5 Hz, ³J_{H(a)C(6)C(5)H} = 5.3 Hz, 1 H), 4.22 (dd, C(6')-H(b), ²J_{H(a)H(b)} = 8.5 Hz, ³J_{H(a)C(6)C(5)H} = 5.3 Hz, 1 H), 4.58 (d, 1 H), 4.71 (dt, 1 H), 5.31 (dd, 1 H), 5.97 (d, 1 H), 7.48 (d, 1 H), 7.51 (d, 1 H), 7.72 (d, 1 H), 7.74 (d, 1 H); $[\alpha]_{25}^{25}$ = +86.22 [c = 0.9522; CH₂Cl₂]. Anal. Calcd for C₄₀H₅₉O₈P: C, 68.7; H, 8.5. Found: C, 68.6; H, 8.5.

ACKNOWLEDGEMENTS

The authors wish to thank Giba-Geigy Corp. for permission to publish this paper and support of this work. S. D. P. thanks Mr. Rudolf Kesselring (Ciba-Geigy Central Research Laboratories, Basel, Switzerland) for the preparation of the tris(gluco)phosphite, and Dr. R. K. Rodebaugh for the 2D COSY experiments.

REFERENCES

- 1. For reviews, see (a) J. D. Morrison, "Asymmetric Synthesis," Vol. 5, Academic Press: New York, 1983; (b) P. A. Chaloner, "Handbook of Coordination Catalyst in Organic Chemistry," Butterworths: London, 1986; (c) H. Brunner, Topics in Stereochemistry, 18, 129 (1988); (d) H. Brunner, Synthesis, 645 (1988); (e) R. Noyori and M. Kitamura in Modern Synthetic Methods, 5, 155 (1989); (f) I. Ojima, N. Clos and C. Bastos, Tetrahedron, 45, 6901 (1989); (g) R. Noyori and H. Takaya, Acc. Chem. Res., 23, 345 (1990); (h) M. Sasaya and Y. Ito, Chem. Rev., 92, 857 (1992); (i) H.-U. Blaser, Chem. Rev., 92, 935 (1992); (j) I. Ojima, "Catalytic Asymmetric Synthesis," VCH: 1993.
- S. D. Pastor, S. P. Shum, R. K. Rodebaugh, A. D. Debellis and F. H. Clarke, Helv. Chim. Acta, 76, 900 (1993).
- 3. (a) A. H. Malen, M. Ali NabiRahni, S. D. Pastor, E. D. Stevens and J. A. Snyder, Phosphorus

- Sulfur Silicon Relat. Elem., 82, 1 (1993); (b) S. D. Pastor, C. F. Richardson and M. A. NabiRahni, Phosphorus Sulfur Silicon Relat. Elem., in press (1984).
- 4. G. D. Cuny and S. L. Buchwald, J. Am. Chem. Soc., 115, 2066 (1993).
- E. Billig, A. G. Abatjoglou and D. R. Bryant, United States Patent # 4,748.261; Chem. Abstr., 107, 7392.
- (a) G. J. H. Buisman, P. C. J. Kramer and P. W. N. M. van Leeuwen, *Tetrahedron: A symmetry*,
 4, 1625 (1993); (b) P. W. N. M. van Leeuwen, G. J. H. Buisman, A. van Rooy and P. C. J. Kamer, *Recl. Trav. Chim. Pays-Bas.*, 113, 61 (1994).
- 7. For carbohydrate derived phosphorus ligands, see (a) E. E. Nifant'ev, A. P. Tuseev and V. V. Tarasov, J. Gen. Chem. USSR (Engl. Transl.), 36, 1137 (1966); Zh. Obshch. Khim., 36, 1124 (1966); (b) G. Descotes, D. Lafont and D. Sinou, J. Organomet. Chem., 150, C14 (1978); (c) D. Lafont, D. Sinou and G. Descotes, J. Organomet. Chem., 169, 87 (1979); (d) U. M. Dzhemilev, R. N. Fakhretdinov, A. G. Telin and G. A. Tolstikov, Proc. Natl. Acad. Sci. USSR, Chem. Sec. (Engl. Transl.), 1324 (1980); Izv. Akad. Nauk SSSR, Ser. Khim., 944 (1980); (e) U. M. Dzhemilev, R. N. Fakhretdinov, A. G. Telin, G. A. Tolstikov, A. A. Panasenko and E. V. Vasil'eva, Proc. Natl. Acad. Sci. USSR, Chem. Sec. (Engl. Transl.), 1943 (1980); Izv. Akad. Nauk SSSR, Ser. Khim., 2771 (1980); (f) M. Petit, A. Mortreux, F. Petit, G. Buono and G. Peiffer, Nouv. J. Chim., 7, 593 (1983); (g) M. Yamashita, M. Kobayashi, M. Sugiura, T. Oshikawa, S. Inokawa and H. Yamamoto, Carbohydr. Res., 131, C6 (1984); (h) S. Saito, Y. Nakamura and Y. Morita, Chem. Pharm. Bull., 33, 5284 (1985); (i) V. Massonneau, P. Le Maux and G. Simonneaux, J. Organomet. Chem., 288, C59 (1985); (j) P. Le Maux, V. Massonneau and G. Simonneaux, J. Organomet. Chem., 284, 101 (1985); (k) K. Felföldi, I. Kapocsi and M. Bartók, J. Organomet. Chem., 362, 411 (1989); (I) A. Iida and M. Yamashita, Bull. Chem. Soc. Jpn., 61, 2365 (1988); (m) M. Yamashita, M. Naoi, H. Imoto and T. Oshikawa, Bull. Chem. Soc. Jpn., 62, 942 (1989); (n) T. V. RajanBabu and A. L. Casalnuovo, J. Am. Chem. Soc., 114, 6265 (1992); (o) A. Bendayan, H. Masotti, G. Peiffer, C. Siv and A. Archavlis, J. Organomet. Chem., 444, 41 (1993).
- 8. For a carbohydrate derivative of the dibenzo[d,g][1,3,6,2]dioxathiaphosphocin ring system, see S. D. Pastor, Sulfur Letters, 9, 39 (1989).
- E. E. Nifant'ev and A. P. Tuseev, Sintez Prirodn., ikh Analogov i Framentov, Akad. Nauk SSSR, Otd. Obshch. i Tekhn. Khim., 34 (1965); Chem. Abstr., 65, 5511.
- P. A. Odorisio, S. D. Pastor, J. D. Spivack, L. Steinhuebel and R. K. Rodebaugh, *Phosphorus Sulfur*, 15, 9 (1983).
- (a) P. A. Odorisio, S. D. Pastor and J. D. Spivack, *Phosphorus Sulfur*, 19, 1 (1984); (b) P. A. Odorisio, S. D. Pastor, J. D. Spivack, D. Bini and R. K. Rodebaugh, *Phosphorus Sulfur*, 19, 285 (1984).
- (a) J. C. Tebby in "Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis"; J. G. Verkade and L. D. Quin, Eds., VCH: Weinheim, 1987, p. 19; (b) S. G. Kleemann, E. Fluck and J. C. Tebby in "Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data," J. C. Tebby, Ed., CRC Press: Boca Raton, 1991, pp. 49-63.
- The ³IP chemical shift of the chloridite 4a reported in Reference #10 is incorrect. For 4a, ³IP{¹H} NMR (CDCl₃) δ 160.0, ³IP{¹H} NMR (benzene-d₆) δ 158.0.
- 14. W. A. Abdou, D. B. Denney, D. Z. Denney and S. D. Pastor, Phosphorus Sulfur, 22, 99 (1985).
- 15. For a recent monograph, see L. D. Quin in "Conformational Analysis of Medium-Sized Heterocycles," R. S. Glass, Ed., VCH: Weinheim, 1988, pp. 181-216.
- (a) R. P. Arshinova, O. I. Danilova and B. A. Arbuzov, Phosphorus Sulfur, 34, 1 (1987); (b) R. P. Arshinova, Russian Chem. Rev., 57, 1142 (1988); (c) R. P. Arshinova, Phosphorus Sulfur Silicon Relat. Elem., 68, 155 (1992).
- For related conformational work in a P(V) containing dioxaphosphocin ring, see S. D. Pastor and J. D. Spivack, J. Heterocycl. Chem., 28, 1561 (1991).
- 18. The magnitude of the five-bond J H—P coupling measured at both 90 and 200 MHz field strength.
- 19. In the ¹H NMR spectrum, a quartet was observed at δ 5.75 with ³J_{HCCH} = 8 Hz and ⁵J_{HP} = 0 Hz that was assigned to the methine proton of the unidentified phosphorus species. The corresponding C(12)-methyl signal is observed at δ 1.66 in the COSY spectrum. The spectral data is consistent with the unknown species being a configurational isomer of 5b with the C-12 methyl substituent assuming an axial orientation, although separate signals for the glucofuranose substituent were not observed.
- S. D. Pastor, J. D. Spivack, L. P. Steinhuebel and C. Matzura, Phosphorus Sulfur, 15, 253 (1983).
- B. A. Arbusov, R. A. Kadyrov, R. P. Arshinova and N. A. Mukmeneva, Izv. Akad. Nauk SSSR (Engl. Transl.), 784 (1981).
- 22. (a) J. Hans, R. O. Day, L. Howe and R. R. Holmes, Inorg. Chem., 31, 1279 (1992).
- (a) M. J. Baker, K. N. Harrison, A. G. Orpen, P. G. Orpen, P. G. Pringle and G. Shaw, J. Chem. Soc., Chem. Commun., 803 (1991); (b) see also, T. G. Meyer, A. Fischer, P. C. Jones and R. Schmutzler, Z. Naturforsch., 48b, 659 (1993).

- 24. For isolation and characterization of 8 see Reference #2.
- For the reaction of a bisphenol with phosphorus(III) chloride, see L. V. Verizhnikov and P. A. Kirpichnikov, Zh. Obshch. Khim., 37, 1355 (1967); Chem. Abstr., 68, 12597 (1968).
- 26. S. Budavari, Ed., "The Merck Index," 11th ed., Merck & Co., Inc., Rahway, 1989, p. 468.
- 27. Compare to the optical rotation observed for 2 and the mixture 5b, $[\alpha]_D^{25} = -11.94$ [c = 0.9113; CH₂Cl₂], which contains no additional chiral elements.
- 28. Rapid equilibration of diastereomers observed on the NMR time scale due to rapid ring inversion about the stereoaxis of 7 is not expected with the high frequencies associated with optical measurements. The observed optical rotation would be expected to be that of a mixture of diastereomers making the reasonable assumption that one diastereomer is not formed exclusively. For a discussion on time scales for spectral measurements, see F. A. Bovey, "Nuclear Magnetic Resonance Spectroscopy," Academic Press: New York, 1969, pp. 183-184.
- troscopy," Academic Press: New York, 1969, pp. 183-184.

 29. For related work on dioxaphosphepins with P(V) oxidation state, see (a) L. V. Verizhnikov and P. A. Kirpichnikov, Zh. Obshch. Khim. (Engl. Transl.), 37, 1281 (1966); (b) M. S. R. Naidu and C. Nagaraju, Indian J. Chem., 24b, 1164 (1985); (c) B.-F. Hu, Q.-F. Sheng and Z.-M. Li, Phosphorus Sulfur Silicon Relat. Elem., 35, 371 (1988); (d) K. Sivakumar, K. Subramaanian, S. Natarajan, M. Krishnaiah and L. Ramamurthy, Acta Cryst., C45, 806 (1989).
- 30. The ³¹P and ¹H NMR spectra displayed signals corresponding to the unidentified phosphorus moiety discussed in the text and Reference 19. Integration of the phosphorus signals the ³¹P NMR spectrum suggests that the sample is at least 75% of the desired 5b. Caution, however, must be exercised in interpretation of integrated phosphorus signals, see A. B. Shortt, L. J. Durham and H. S. Mosher, J. Org. Chem., 48, 3125 (1983).
- The correct elemental analysis obtained suggests that the unidentified phosphorus compound may be an isomer of 5b.